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We present a study of the entanglement properties of the F-AF zig-zag Heisenberg chain done by means of the Density 
Matrix Renormalization Group method. In particular, we have selected the concurrence as measure of entanglement and 
checked its  capability to signal the presence of quantum phase transitions within the previously found ergodicity phase 
diagram [E. Plekhanov, A. Avella, and F. Mancini, Phys. Rev. B 74, 115120 (2006)]. By analyzing the behavior of the 
concurrence, we have been able not only to determine the position of the transition lines within the phase diagram of the 
system, but also to identify a well defined region in the parameter space of the model that shows a complex spin ordering 
indicating the presence of a new phase of the system. 
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1. Introduction 
 
Can we use any measure of entanglement as a tool to 

signal the presence of a quantum phase transition, and 
identify its nature, within the phase diagram of a physical 
system? Unfortunately, there is still no definitive answer 
to this question although more and more results, recently 
published in the literature, give clear evidences that this 
should be the case [1]. But why do we care about using the 
properties of entanglement of a system to this end? The 
answer to this question exists, and is much simpler and 
immediate: almost any measure of entanglement can be 
almost exactly (after a finite-size scaling analysis) and 
automatically computed by means of numerical techniques 
(Lanczos, quantum Monte Carlo, Density Matrix 
Renormalization Group (DMRG)) and depends on a large 
number of correlations functions in a non-trivial manner. 
According to this, people hope to sketch the phase diagram 
of complex physical systems just analyzing the behavior of 
a single, easily computable, physical quantity instead of 
struggling to figure out which is the correlation function 
reporting the signature of a specific transition. On the 
other hand, the versatility of entanglement measures has a 
clear drawback: it is rather difficult to deeply comprehend 
the nature of a transition just looking at the behavior of 
such quantities in its proximity. At the end of the day, one 
has often to resort to correlation and response functions in 
order to classify, both in terms of nature and order, a 
transition. Therefore, we can just hope to use entanglement 
measures as cheap tools to position all transition lines over 
the phase diagram. At any rate, this should not be 
considered as a little achievement. As a matter of fact, 
after such a preliminary analysis, we could focus on few 
lines over a phase diagram instead of being forced to study 
the whole parameter space. In this manuscript, we have 
studied the entanglement properties of the one-
dimensional Heisenberg model with both nearest-neighbor 
and next-nearest-neighbor interactions. In particular, we 

have chosen a ferromagnetic z-axis nearest-neighbor 
interaction and an antiferromagnetic in-plane nearest-
neighbor interaction. The next-nearest-neighbor 
interaction is antiferromagnetic and isotropic. The 
anisotropy in the nearest-neighbor interaction and the 
presence of a next-nearest-neighbor interaction are both 
sources of frustration and open the possibility to have a 
quite rich phase diagram for this model. This model is 
suitable to describe cuprates with edge-sharing CuO2 
plaquettes where the bonding angle between two nearest 
Coppers and the intermediate Oxygen is slightly larger 
than 90° resulting in a ferromagnetic nearest-neighbor 
interaction term with an intensity comparable to the 
antiferromagnetic next-nearest-neighbor interaction term. 
According to this, the analysis of the phase diagram of 
such a model is relevant not only on the pure theoretical 
level (effects of frustration, incommensurability, spiral 
ordering, dimerization), but also on the level of 
understanding real materials and their applications. 

The manuscript is organized as follows. In the next 
section, we present the Hamiltonian under study and give 
few details about the numerical framework within which 
the model has been solved. In section three, we describe 
the entanglement measure we have chosen to compute and 
give the reasons behind such a choice. The results of the 
analysis are discussed in section four. Finally, we draw 
some conclusions and give some perspectives. 

 
 
2. Model and method 
 
The Hamiltonian under analysis reads as: 
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Where Jz > 0 is the ferromagnetic z-axis nearest-
neighbor coupling constant, 0>⊥J  is the 
antiferromagnetic inplane nearest-neighbor coupling 
constant and J’ > 0 is the antiferromagnetic isotropic next-
nearest-neighbor coupling constant. 

We solved the Hamiltonian (1) numerically by means 
of the DMRG [2] technique on a chain with 100 sites. 
DMRG forced us to use open-boundary conditions. We 
have retained up to 200 states per block at every step of 
the renormalization procedure. The finite-size effects, 
enhanced by the open-boundary conditions, have been 
systematically mitigated by taking into account, in the 
average procedures, only the central part of the system, i.e. 
by neglecting the contributions coming from the sites close 
to the edges. It is worth noticing that the region of model-
parameter space we have explored is just inaccessible to 
any of the almost exact field theories as no small 
parameter can be easily identified. Only a very powerful 
numerical technique, such as DMRG, would be capable to 
bridge the gap between the few known exact results for 
this model and to provide reliable reference data. 

 
 
3. Concurrence 
 
There exist a few entanglement measures, which 

mainly differ in the way the system is split into two blocks 
whose entanglement is measured: a reference block, whose 
properties (averages and correlation functions) will come 
into play, and the rest of the system, which will simply act 
as a bath. In spin systems, the one-tangle (i.e., when we 
choose as reference system a single spin), or von Neumann 
entropy, is a function of the local magnetization only and, 
hence, is no more informative than this latter. Then, in 
such systems, in order to catch some more physics than 
only the one related to the ferromagnetic phase, it is 
necessary to use the concurrence[3], or pairwise 
entanglement (i.e., the reference system will now be two 
spins), which depends on spin-spin correlation functions. 
 
 

 
 

Fig. 1.Schematic phase diagram of the model (1).See Ref 
[5] for a detailed description of the phases 

 
 

The concurrence for a couple of spins residing at sites 
i and j, respectively, is defined as: 
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where }{ iλ  are the eigenvalues, in decreasing order, of a 
positively definite matrix R defined as follows: 
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where ¾y is just the second Pauli matrix and ½ is the 
reduced density matrix. This latter can be computed by 
integrating out, in the ordinary density matrix of the 
system, all degrees of freedom except for those of the two 
spins under analysis. If one integrates out the degrees of 
freedom of the bath analytically, the reduced density 
matrix of two spins reads as: 
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We have assumed that there is no anisotropy in the x ¡ 
y plane. The extreme values of the concurrence, zero and 
one, indicate that the system is either a product state or a 
maximally entangled one, respectively. Wootters [3] 
demonstrated that the concurrence can be directly related 
to the entropy of formation for two spins 1/2 both for pure 
and mixed states. 

In order to take into account the contribution to the 
entanglement coming from the correlations at all distances, 
in this manuscript, we have adopted 2τ  [4] as the 
reference entanglement measure: 
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According to our average procedure (see Sec. 2), 

diiC +, does not depend on i and so does 2τ . 
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Fig. 2. 2τ as function of (left) JxJ /⊥ and (right) JxJ /' . 
 
 

4.  Results 
 
The starting point of our analysis is the doubly 

degenerate, completely polarized state, located within the 
phase diagram of the system in the region 

zz JJJJ 31.0'≤−<⊥ as found in Ref [5] (see Fig1) 

First, we analyze the behavior of 2τ  across the 

transition of the A type (see Fig. 1). At  JzJ >>⊥  and 
0'=J , the model reduces to the exactly solvable  XX 

model which shows an in plane antiferromagnetic quasi-
long-range order. We do expect an XX-model-like 
behavior all the way down to JzJ ≥⊥   [6]. As can be 

seen from Fig. 2 (left), 2τ  successfully detects the 
increase of complexity of the ground state trough the A-
type phase transition. At zJJ 3.0'=  a region with non-
zero entanglement is present well below the isotropic line 
( zz JJJ 05.182.0 << ⊥ ) and can be interpreted as the 
appearance of a third phase between the ferromagnetic and 
the XX-model-like ones. For larger values of 'J , in the 
range of ⊥J values explored by us, 2τ  is finite, but almost 

featureless. Entanglement measures other than 2τ , such as 
measures involving more than two spins in the reference 
system, could reveal the presence of other phase 

transitions in this region. In particular, entanglement 
measures involving four spins should be able to check the 
tendency towards dimerization. In A-type transitions, dC  
is non zero only for values of d up to 15 lattice spacings. 

Then, we examine the features of 2τ  as 'J   exceeds 

the critical value of approximately zJ31.0  for JzJ <⊥  
(transitions of B type on Fig. 1). The increasing frustration 
induced by the next-nearest-neighbor term steadily reduces 
the ferromagnetic polarization of the spins as the intensity 
of the antiferromagnetic correlations between next-nearest 
neighbors increases. As a matter of fact, within the region 

)4.0'31.0( zz JJJ << , we have found a finite 
magnetization per site together with an increasing next-
nearest-neighbor antiferromagnetic correlation length. 
From an entanglement point of view, a completely 
polarized ferromagnetic state has zero concurrence since it 
is a product state. Therefore, 2τ  is expected to increase 
from zero to a finite value across the transition. Indeed, 
such a behavior was already observed in our previous 
Lanczos calculations [7] on a 24-site system, but the quite 
relevant finite-size effects led to the appearance of steps in 

)'(2 Jτ  that mined our comprehension of the order and 
nature of the transition. The current DMRG calculations 
on a 100-site system are not affected by such drawbacks. It 
can be very clearly seen in Fig. 2 (right) that 2τ  is quite 
sensible with respect to this transition. Up to values of 

zJJ 7.0=⊥ , 2τ  is almost independent on ⊥J  and 
presents only a wide peak immediately after the transition. 
However, for zJJ 9.0=⊥ , this peak evolves into a 

pronounced maximum at zz JJJ 35.0'3.0 << , which, 
together with the above noted analogous increase at 

zz JJJ 05.182.0 << ⊥  and zJJ 3.0'= , indicates the 
presence of a well defined region in the parameter space 
that is a good candidate to be recognized as a new ordered 
phase of the system. The nature of the ordering ruling such 
a phase can be deeply understood only by studying the 
spin-spin correlation functions and such a work is 
currently in progress. It is worth noting that our present 
calculations confirm an earlier observation that the only 
non-zero contributions to 2τ , for zT JJ 9.0<  in B-type 
of transitions, are those coming from second-neighbor 
spin-spin correlation functions. For zT JJ 9.0= , we have 
found that also third-neighbor spin-spin correlations 
contribute to 2τ . 

 
5.  Conclusions 
 
We have studied a 100-site anisotropic extended F-AF 

Heisenberg chain by means of Density Matrix 
Renormalization Group retaining 200 states per block at 
every renormalization stage. We have measured the 
concurrence at all distances and checked its capability to 
detect phase transitions leaving the fully polarized 
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ferromagnetic phase of the system on varying the 
frustration driven by the anisotropy in the nearest-neighbor 
coupling and by the presence of next nearest neighbor 
coupling. Although it was not possible to establish neither 
the order of the transitions nor the nature of the newly 
appearing phases, the behavior of the concurrence clearly 
showed their presence. Moreover, by means of the analysis 
of concurrence features, we have been able to identify a 
well defined region in the parameter space that shows the 
signatures of a complex spin ordering. In order to clarify 
the nature of this probable new phase, we have just started, 
and it is still in progress, the analysis of spin-spin 
correlation functions in this region. 
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